x^4-10x^2+9=0 решите уравнение
Ищем корни x4 - 10x2 + 9 = 0 биквадратного уравнения. Для этого мы начнем с введения замены переменной.
Итак, пусть x2 = t и тогда мы получим уравнение:
t2 - 10t + 9 = 0;
Решаем полученное квадратное уравнение:
D = b2 - 4ac = (-10)2 - 4 * 1 * 9 = 100 - 36 = 64;
Переходим к нахождению корней уравнения по формулам:
t1 = (-b + √D)/2a = (10 + √64)/2 * 1 = (10 + 8)/2 = 18/2 = 9;
t2 = (-b - √D)/2a = (10 - √64)/2 * 1 = (10 - 8)/2 = 2/2 = 1.
Вернемся к замене:
1) x2 = 9;
x = 3; x = -3.
2) x2 = 1;
x = 1; x = -1.
t² -t -2 >0 ;
(t+1)(t -2) >0 ;
+ - +
(-1) 2
t∈( -∞ ; -1) U (2 ; ∞) . ⇒ cosx ∈ ( -∞ ; -1) U (2 ; ∞) невозможно .
ответ: x ∈ ∅ .
sin²x - 2sinx -3 < 0 ; замена sinx =t ; |t|≤1 * * *
t² -2t -3 < 0 ;
(t+1)(t -3) <0 ;
+ - +
(-1) 3
t∈( -1;3) ⇒ sinx ∈ ( -1; 3) учитывая что sinx ≤1 получается
sinx ∈ ( -1; 1] .
ответ: для всех x ≠ - π/2 +2πk , k∈Z.
x ∈ R \ {. -π/2 +2πk , k∈Z }
x^4-10x^2+9=0 решите уравнение
Ищем корни x4 - 10x2 + 9 = 0 биквадратного уравнения. Для этого мы начнем с введения замены переменной.
Итак, пусть x2 = t и тогда мы получим уравнение:
t2 - 10t + 9 = 0;
Решаем полученное квадратное уравнение:
D = b2 - 4ac = (-10)2 - 4 * 1 * 9 = 100 - 36 = 64;
Переходим к нахождению корней уравнения по формулам:
t1 = (-b + √D)/2a = (10 + √64)/2 * 1 = (10 + 8)/2 = 18/2 = 9;
t2 = (-b - √D)/2a = (10 - √64)/2 * 1 = (10 - 8)/2 = 2/2 = 1.
Вернемся к замене:
1) x2 = 9;
x = 3; x = -3.
2) x2 = 1;
x = 1; x = -1.