Объем прямоугольного параллелепипеда находится по формуле V = abc, где a,b,c - его измерения.
Так как основание - квадрат, то два измерения - пусть, к примеру, а и b, - равны ⇒ V = a²c. а²с = 270 ⇒ с = .
Металл, очевидно, тратят на изготовление поверхности прямоугольного параллелепипеда. Площадь основания равна а². Площадь боковой грани равна . Боковых граней у нас 4, а основание - одно (Так как по условию верх открытый). Поэтому полная поверхность нашего параллелепипеда задается следующей функцией: , где а > 0.
Найдем производную данной функции:
Найдем критические точки функции:
Точка а ≈ 8, 14 - точка минимума. Следовательно, при а ≈ 8,14 площадь поверхности параллелепипеда будет минимальной, и на него затратят минимальное кол-во металла.
Примечание. Используя квадратный трехчлен любой из данных квадратичных функций, можно очень быстро составить задания для решения квадратных уравнений и квадратных неравенств, причем все они будут иметь целочисленные («хорошие») корни.
Приведем пример составления уравнений и неравенств для квадратного трехчлена x2 – 6x + 5, данного в формуле 7.
ответ: два измерения ≈ 8,14, третье ≈ 4,07.
Объяснение: Вместимость - то же, что и объем.
Объем прямоугольного параллелепипеда находится по формуле V = abc, где a,b,c - его измерения.
Так как основание - квадрат, то два измерения - пусть, к примеру, а и b, - равны ⇒ V = a²c. а²с = 270 ⇒ с = .
Металл, очевидно, тратят на изготовление поверхности прямоугольного параллелепипеда. Площадь основания равна а². Площадь боковой грани равна . Боковых граней у нас 4, а основание - одно (Так как по условию верх открытый). Поэтому полная поверхность нашего параллелепипеда задается следующей функцией: , где а > 0.
Найдем производную данной функции:
Найдем критические точки функции:
Точка а ≈ 8, 14 - точка минимума. Следовательно, при а ≈ 8,14 площадь поверхности параллелепипеда будет минимальной, и на него затратят минимальное кол-во металла.
b = a ≈ 8,14. Найдем величину c:
Вариант 1
1. y = x2 – 4x
2. y = – 2x2 + 4x + 6
3. y = – 0,5x2 – 3x – 2,5.
4. y = 0,25x2 + 3x + 5.
Вариант 2
1. y = x2 + 6x.
2. y = – 3x2 – 12x – 9.
3. y = 0,25x2 – x – 7,5.
4. y = – 0,25x2 + 2x + 5.
Вариант 3
1. y = – x2 + 2x + 8.
2. y = 2x2 – 12x + 10.
3. y = – 0,5x2 – 2x.
4. y = 0,25x2 + 2x – 5.
Вариант 4
1. y = – x2 + 6x – 8.
2. y = 3x2 + 12x + 9.
3. y = 0,5x2 – 4x.
4. y = – 0,25x2 – 3x – 5.
Вариант 5
1. y = x2 + 8x + 12.
2. y = – 2x2 + 8x.
3. y = 0,5x2 – x – 1,5.
4. y = – 0,25x2 – x + 3.
Вариант 6
1. y = x2 + 6x + 8.
2. y = – 3x2 + 6x.
3. y = 0,5x2 – 2x – 6.
4. y = – 0,25x2 – 2x + 5.
Вариант 7
1. y = x2 – 8x + 7.
2. y = – 2x2 – 12x – 10.
3. y = 0,5x2 + 2x.
4. y = – 0,25x2 + 3x – 8.
Вариант 8
1. y = x2 – 2x – 3.
2. y = – 2x2 + 8x – 6.
3. y = 0,5x2 + 4x + 6.
4. y = – 0,25x2 – 3x.
Вариант 9
1. y = – x2 – 4x + 5.
2. y = 2x2 – 4x – 6.
3. y = 0,5x2 + 3x + 2,5.
4. y = – 0,25x2 + 2x.
Вариант 10
1. y = – x2 – 2x + 8.
2. y = 2x2 + 8x + 6.
3. y = – 0,5x2 + 3x – 2,5.
4. y = 0,25x2 – 3x.
Вариант 11
1. y = – x2 + 4x.
2. y = 2x2 + 4x – 6.
3. y = – 0,5x2 – 3x + 3,5.
4. y = 0,25x2 – 2x – 5.
Вариант 12
1. y = x2 + 2x – 3.
2. y = – 2x2 – 8x.
3. y = – 0,5x2 + 3x + 3,5.
4. y = 0,25x2 – x – 8.
Вариант 13
1. y = – x2 – 6x.
2. y = 2x2 – 8x + 6.
3. y = – 0,5x2 + 4x – 6.
4. y = 0,25x2 + 3x + 8.
Вариант 14
1. y = – x2 – 4x – 3.
2. y = – 2x2 + 12x – 10.
3. y = 0,5x2 + x – 7,5.
4. y = 0,25x2 – 2x.
Вариант 15
1. y = – x2 + 6x – 5.
2. y = – 2x2 – 8x – 6.
3. y = 0,5x2 + 4x.
4. y = 0,25x2 – 3x + 8.
Вариант 16
1. y = – x2 – 2x.
2. y = – 3x2 + 12x – 9.
3. y = 0,5x2 – 3x – 3,5.
4. y = 0,25x2 + 2x + 3.
Вариант 17
1. y = – x2 + 4x – 3.
2. y = 2x2 – 4x.
3. y = 0,5x2 + 3x – 3,5.
4. y = – 0,25x2 – 2x – 3.
Вариант 18
1. y = x2 – 4x + 3.
2. y = 2x2 + 12x + 10.
3. y = – 0,5x2 – 4x.
4. y = – 0,25x2 + 3x – 5.
Вариант 19
1. y = x2 – 6x + 8.
2. y = – 2x2 – 4x + 6.
3. y = – 0,5x2 + 2x + 6.
4. y = 0,25x2 + 2x.
Вариант 20
1. y = x2 + 8x + 7.
2. y = 2x2 – 8x.
3. y = – 0,5x2 + x + 1,5.
4. y = – 0,25x2 – 3x – 8.
Примечание. Используя квадратный трехчлен любой из данных квадратичных функций, можно очень быстро составить задания для решения квадратных уравнений и квадратных неравенств, причем все они будут иметь целочисленные («хорошие») корни.
Приведем пример составления уравнений и неравенств для квадратного трехчлена x2 – 6x + 5, данного в формуле 7.
1) x2 – 6x + 5 = 0 (или – x2 + 6x – 5 = 0);
2) x2 + 6x + 5 = 0 (или – x2 – 6x – 5 = 0).
Всего можно составить 40 различных уравнений.
3) x2 – 6x + 5 < 0 (или – x2 + 6x – 5 > 0);
4) x2 – 6x + 5 > 0 (или – x2 + 6x – 5 < 0);
5) x2 – 6x + 5 Ј 0 (или – x2 + 6x – 5 і 0);
6) x2 – 6x + 5 і 0 (или – x2 + 6x – 5 Ј 0);
7) x2 + 6x + 5 < 0 (или – x2 – 6x – 5 > 0);
8) x2 + 6x + 5 > 0 (или – x2 – 6x – 5 < 0);
9) x2 + 6x + 5 Ј 0 (или – x2 – 6x – 5 і 0);
10) x2 + 6x + 5 і 0 (или – x2 – 6x – 5 Ј 0).
Всего можно составить 160 различных неравенств.
.