Вектор-функция — функция, значениями которой являются векторы в векторном пространстве {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} } двух, трёх или более измерений. Аргументами функции могут быть:
одна скалярная переменная — тогда значения вектор-функции определяют в {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} } некоторую кривую; m скалярных переменных — тогда значения вектор-функции образуют в {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} }, вообще говоря, m-мерную поверхность; векторная переменная — в этом случае вектор-функцию обычно рассматривают как векторное поле на {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} }.
Чтобы узнать, делится ли число на 99, нужно разбить его на двузначные числа справа налево, крайнее левое число может состоять из 1 цифры. Если сумма этих чисел делится на 99, значит само число делится на 99.
Разбиваем число на пары: 6+2*+*4+27
Считаем, что мы имеем на данный момент: 6 + 20 + 4 + 27 = 57, а нам нужна сумма 99: 99 - 57 = 42 - к нашему числу, разбитому на пары, нужно добавить 4 десятка и 2 единицы:
6+22+44+27=99 - делится на 99, значит и исходное число делится на 99. Проверяем:
одна скалярная переменная — тогда значения вектор-функции определяют в {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} } некоторую кривую;
m скалярных переменных — тогда значения вектор-функции образуют в {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} }, вообще говоря, m-мерную поверхность;
векторная переменная — в этом случае вектор-функцию обычно рассматривают как векторное поле на {\displaystyle \mathbb {V} } {\displaystyle \mathbb {V} }.
Разбиваем число на пары:
6+2*+*4+27
Считаем, что мы имеем на данный момент:
6 + 20 + 4 + 27 = 57, а нам нужна сумма 99:
99 - 57 = 42 - к нашему числу, разбитому на пары, нужно добавить 4 десятка и 2 единицы:
6+22+44+27=99 - делится на 99, значит и исходное число делится на 99. Проверяем:
6224427 : 99 = 62873