Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм.Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2)Стороны треугольника АВЕ это AC = 15; СЕ = BD = 7; AE = АЕ = AD + BC = 2*10 = 20;Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*7/2=52.5 .ответ 52.5 площадь трапеции
Приступим. Найдем гипотенузу по теореме Пифагора.144+256=гипотенуза^2400=гипотенуза^2гипотенуза = 20смМедиана делит гипотенузу на 2 равные части, следовательно половина гипотенузы равна 10 смОпустим высоту из медианы и получим 2 подобных треугольника коэффициент подобия будет равен 2. Значит эта высота будет равна 12/2 = 6Найдем часть катета, которую отскла эта высота100-36=8^2Следовательно мы отсекли 8 смНаходим медиану, она будет гипотенузой.6^2+8^2=медиана^2медиана=10Эта задача с двумя решениями, потому что может поменять местами катетыНачало одинаковое, различия начинаются когда опускаем высоту. Пусть теперь нижний катет равен 12, тогда. Тогда будет коэффициент подобия треугольников тоже 2, но высота будет равна 16/2=8Найдем часть катета, которую отсекла высота. 100-64=6^2Следовательно мы отсекли 6см. Найдем медиану6^2+8^2=10^2медиана = 10см.Длина окружности - периметр круга.P=2nRD=2RR=5получается, что длина окружности равна 10n (n - пи, или 22/7)ответ: 10n