64 получено от числа 2 умноженного на себя же в 6 раз. То есть получаем, что 2 в 6 Степни равна 64. Если в примере дано число со степенью и за скобкой ещё степень. То внешнюю степень (она за скобкой) умножаем на внутреннюю ( степень внутри скобки). То есть (2 в минус 3 степени) в 3 степени, мы не трогаем основу, то есть цифру 2, а просто умножаем степень на степень, то есть -3 * 3 = -9 И у нас выходит 2 в минус 9 Степени. А теперь при умножений чисел со степенями, если есть возможность приравнять основу к одному числу, пользуемся этой возможностью. Зная, что 64 это 2 в 6 степени и его умножили на 2 в минус 9 степени, переходим к правилу. Если у основания степеней одни и те же числа. То основание не трогаем, а работает со степенями. То есть если 2^1 * 2^5 то это равняется к 2 ^ (1+5) = 2^6 степени. Если дело обстоит с делением, то основание не трогаем, а занимаемся степенями. То есть если в случае 2^1 : 2^5 = 2^1-5= 2^-4 А теперь если степень отрицательное число, то число со степенью отпускается вниз, чтобы избавится от минуса. То есть 2^-4 мы должны писать как 1/2^4 или 1/16
В примере 64*(2^3)^-3 Приводим к общему основанию 2^6 * (2^3)^-3 Теперь умножаем степень на степень и избавляемся от скобки 2^6 * 2^-9 Так как основания одни, но степень разные. Прибавляем степени, так как у нас знак умножения 2^6+(-9) = 2^-3 Вспоминаем правило, при вычитании чисел, от большего отнимаем меньшее и ставим знак большего, то есть мы от 9 отняли 6, и поставили знак числа 9
Теперь, так как ответ 2^-3 в минусовой степени. Наше число переходит вниз 1/2^3 или 1/8
То есть получаем, что 2 в 6 Степни равна 64.
Если в примере дано число со степенью и за скобкой ещё степень. То внешнюю степень (она за скобкой) умножаем на внутреннюю ( степень внутри скобки).
То есть (2 в минус 3 степени) в 3 степени, мы не трогаем основу, то есть цифру 2, а просто умножаем степень на степень, то есть -3 * 3 = -9
И у нас выходит 2 в минус 9 Степени.
А теперь при умножений чисел со степенями, если есть возможность приравнять основу к одному числу, пользуемся этой возможностью.
Зная, что 64 это 2 в 6 степени и его умножили на 2 в минус 9 степени, переходим к правилу. Если у основания степеней одни и те же числа. То основание не трогаем, а работает со степенями. То есть если 2^1 * 2^5 то это равняется к 2 ^ (1+5) = 2^6 степени. Если дело обстоит с делением, то основание не трогаем, а занимаемся степенями. То есть если в случае 2^1 : 2^5 = 2^1-5= 2^-4
А теперь если степень отрицательное число, то число со степенью отпускается вниз, чтобы избавится от минуса. То есть 2^-4 мы должны писать как 1/2^4 или 1/16
В примере
64*(2^3)^-3
Приводим к общему основанию
2^6 * (2^3)^-3
Теперь умножаем степень на степень и избавляемся от скобки
2^6 * 2^-9
Так как основания одни, но степень разные. Прибавляем степени, так как у нас знак умножения
2^6+(-9) = 2^-3
Вспоминаем правило, при вычитании чисел, от большего отнимаем меньшее и ставим знак большего, то есть мы от 9 отняли 6, и поставили знак числа 9
Теперь, так как ответ 2^-3 в минусовой степени. Наше число переходит вниз
1/2^3 или 1/8
1б) √0,17 > 0,4.
1в) √2,3 < √2 1/3.
2а) -1; -0,5; √0,2; √0,25; 0,7.
2б) 1/3; √2/9; √0,4; 1,8; √3 1/3.
Объяснение:
1б) √0,17 и 0,4
√0,17 и √0,16
0,17>0,16 , значит √0,17 > √0,16 и √0,17 > 0,4.
1в) √2,3 и √2 1/3
√2 3/10 и √2 1/3
√2 9/30 и √2 10/30
2 9/30 < 2 10/30, значит √2 9/30 < √2 10/30 и √2,3 < √2 1/3.
2а) 0,7; -1; √0,2; -0,5; √0,25
√0,49; -1; √0,2; -0,5; √0,25
т.к. 0,2<0,25<0,49, то √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < 0,7.
ответ: -1; -0,5; √0,2; √0,25; 0,7.
2б) √0,4; 1/3; √2/9; √3 1/3; 1,8
√2/5; √1/9; √2/9; √3 3/9; √3,24
√2/5; √1/9; √2/9; √3 3/9; √3 6/25
√90/225; √25/225; √50/225; √3 75/225;√3 54/225
т.к. 25/225 < 50/225 < 90/225 < 3 54/225 < 3 75/225, то
√25/225 < √50/225 < √90/225 < √3 54/225 < √3 75/225
1/3 < √2/9 < √0,4 < 1,8 < √3 1/3.
ответ: 1/3; √2/9; √0,4; 1,8; √3 1/3.