4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
При решении линейных неравенств, переносим все известные вправо, а неизвестные влево. При переносе через знак неравенства необходимо изменить знак слагаемого на противоположный. т.е. а-2 < 3а а - 3а < 2 (<- перенесли 3а со знаком минус, а 2 перенесли со знаком плюс) Далее необходимо привести подобные слагаемые. От а отнять 3а. -2а < 2 Разделим обе части неравенства на -2. При делении/умножении на отрицательное число знак неравенства изменится на противоположный, т.е. -2а : (-2) > 2: (-2) a > -1 ответ: (-1; +∞)
1)Найдём значения функции на концах отрезка:
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.
Объяснение:
а-2 < 3а
а - 3а < 2 (<- перенесли 3а со знаком минус, а 2 перенесли со знаком плюс)
Далее необходимо привести подобные слагаемые. От а отнять 3а.
-2а < 2
Разделим обе части неравенства на -2. При делении/умножении на отрицательное число знак неравенства изменится на противоположный, т.е.
-2а : (-2) > 2: (-2)
a > -1
ответ: (-1; +∞)