Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Расписываем систему: {x=4+y, {xy+y^2=6; Подставляем (4+у) вместо х и получаем: {x=4+y, {(4+y)y+y^2=6; {x=4+y, {4y+y^2+y^2=6; Выносим у за скобку {x=4+y, {y(4+y+y)=6; {x=4+y, {y(4+2y)=6; {x=4+y, {4y+2y^2=6. Решаем уравнение: 4y+2y^2=6 (приравниваем к нулю, а число 6 переносим в противоположную сторону и меняем его знак (+ на -) в итоге: 4y+2y^2-6=0,(располагаем числа по порядку) 2y^2+4y-6=0, решаем через дискриминант: D=4^2-4*2*(-6)=16+48=64, квадратный корень из 64 равен 8: y1=-4+8/4=1 y2=-4-8/4=-12/4=-3. Находим теперь х (х=4+у): x1=4+1=5 х2=4+(-3)=1 => y1=1, у2=-3, х1=5, х2=1
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
{x=4+y, {(4+y)y+y^2=6; {x=4+y, {4y+y^2+y^2=6; Выносим у за скобку {x=4+y, {y(4+y+y)=6; {x=4+y, {y(4+2y)=6; {x=4+y, {4y+2y^2=6. Решаем уравнение:
4y+2y^2=6 (приравниваем к нулю, а число 6 переносим в противоположную сторону и меняем его знак (+ на -) в итоге:
4y+2y^2-6=0,(располагаем числа по порядку)
2y^2+4y-6=0, решаем через дискриминант:
D=4^2-4*2*(-6)=16+48=64, квадратный корень из 64 равен 8:
y1=-4+8/4=1
y2=-4-8/4=-12/4=-3. Находим теперь х (х=4+у):
x1=4+1=5
х2=4+(-3)=1 => y1=1, у2=-3, х1=5, х2=1