а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно
Объяснение:
Рішення
а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума