Объяснение:
10) 5x²+3x-8=0;
a=5; b=3; c=-8;
D=b²-4ac=3²-4*5*(-8)=9+160=169>0 --- 2 корня.
x1=(-b+√D)/2a=(-3+√169)/2*5=( -3+13)/2*5=10/10=1;
x2=(-b-√D)/2a=(-3-√169)/2*5=(-3-13)/2*5=-16/10= -1.6.
***
7) x²-4x+3=0;
По теореме Виета:
x1+x2=4;
x1*x2=3;
x1=3; x2=1;
x²-2x-1=0;
a=1; b=-2; c= -1;
D=b²-4ac=(-2)²-4*1*(-1)=4+4=8>0 - 2 корня.
x1=(-(-2)+√8)/2*1=(2+2√2)/2 =1+√2;
x2= (-(-2)-√8)/2=(2+2√2)/2=1-√2.
9) 2x²-9x+10=0;
a=2; b=-9; c=10;
D=b²-4ac=(-9)²-4*2*10=81-80=1>0 --- 2 корня.
x1=(-b+√D)/2a=(-(-9)+√1)/2*2=10/4=2.5;
x2=(-b-√D)/2a=(-(-9)-√1)/2*2=(9-1)/4=8/4=2.
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
Объяснение:
10) 5x²+3x-8=0;
a=5; b=3; c=-8;
D=b²-4ac=3²-4*5*(-8)=9+160=169>0 --- 2 корня.
x1=(-b+√D)/2a=(-3+√169)/2*5=( -3+13)/2*5=10/10=1;
x2=(-b-√D)/2a=(-3-√169)/2*5=(-3-13)/2*5=-16/10= -1.6.
***
7) x²-4x+3=0;
По теореме Виета:
x1+x2=4;
x1*x2=3;
x1=3; x2=1;
***
x²-2x-1=0;
a=1; b=-2; c= -1;
D=b²-4ac=(-2)²-4*1*(-1)=4+4=8>0 - 2 корня.
x1=(-(-2)+√8)/2*1=(2+2√2)/2 =1+√2;
x2= (-(-2)-√8)/2=(2+2√2)/2=1-√2.
***
9) 2x²-9x+10=0;
a=2; b=-9; c=10;
D=b²-4ac=(-9)²-4*2*10=81-80=1>0 --- 2 корня.
x1=(-b+√D)/2a=(-(-9)+√1)/2*2=10/4=2.5;
x2=(-b-√D)/2a=(-(-9)-√1)/2*2=(9-1)/4=8/4=2.
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0