Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек