Задача решается через систему двух уравнений с двумя переменными. Пусть скорость третьего велосипедиста равна v км/ч, а t ч - время, за которое он догнал второго велосипедиста. До встречи третий и второй велосипедисты проехали одно и то же расстояние. По условию задачи, второй ехал на 1 час больше, чем третий. Тогда t+1 ч - время второго Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t v*t второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов, а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего. Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t+9 v*(t+9) второй 24 t+11 24*(t+11) Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений: { vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение) { v(t+9)=24(t+11)
Итак, t=3 часа Находим скорость третьего велосипедиста: (км/ч)
Пусть скорость третьего велосипедиста равна v км/ч,
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t v*t
второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t+9 v*(t+9)
второй 24 t+11 24*(t+11)
Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений:
{ vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)
Итак, t=3 часа
Находим скорость третьего велосипедиста:
(км/ч)
ответ: 28 км/ч
5-x≤4
-x≤4-5
-x≤ -1
x≥1
2) 4^(x) (1-3*4⁻²) >52
4^(x) (1- ³/₁₆)>52
4^(x) * (¹³/₁₆)>52
4^(x) > 52*16
13
4^(x) > 4*16
4^(x)> 4³
x>3
3) 5x+6 > x²
-x² +5x+6>0
x² -5x-6<0
x² -5x-6=0
D=25+24=49
x₁= 5-7 = -1
2
x₂= 5+7 = 6
2
+ - +
-1 6
x∈(-1; 6)
4) Пусть 0,5^(x)=y и 0.25^(x)=(0.5²)^(x)=(0.5^(x))²=y²
y² -12y+32≥0
y² -12y+32=0
D=144-128=16
y₁= 12-4 = 4
2
y₂= 8
+ - +
4 8
{y≤4
{y≥8
1) 0.5^(x)≤4
(1/2)^(x)≤2²
2^(-x)≤2²
-x≤2
x≥ -2
2) 0.5^(x)≥8
(1/2)^(x)≥2³
2^(-x)≥2³
-x≥3
x≤ -3
x∈(-∞; -3]U[-2; +∞)