Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
ответ: 2-а числа
Но можно решить и подстановки.
Выражаем из первого уравнения х через у (х=-12/у) и подставляем это значение во второе уравнение.
(-12/у)² + у² = 25
144/у² + у² = 25
Умножаем обе части уравнения на у² (у≠0), чтобы избавиться от знаменателя.
144 + у⁴ = 25у²
Получили биквадратное уравнение.
у⁴-25у²+144=0
Вводим замену у²=t
t²-25t+144=0
D=625-576=49
t₁=(25+7)/2=16
t₂=(25-7)/2=9
Ищем у.
у²=16 у²=9
у₁=-4 у₃=-3
у₂=4 у₄=3
Находим соответствующие значения х.
х₁ = -12/(-4) = 3
х₂ = -12/4 = -3
х₃ = -12/(-3) = 4
х₄ = -12/3 = -4
ответ. (3;-4), (-3;4), (4;-3), (-4;3)