Вначала рассмотрим функция у=х^2+2x+1 и если у=о, то х^2+2x+1=0 найдём нули этого ур-ия, по теореме Виета он будет один х=-1 чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём) графиком является парабола, отмечаем точку -1 на прямой 1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет 2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху) 3)здесь {-1} 4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху) и знак >=
найдём нули этого ур-ия, по теореме Виета он будет один х=-1
чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём)
графиком является парабола, отмечаем точку -1 на прямой
1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет
2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху)
3)здесь {-1}
4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху)
и знак >=
2cosxsinx+2sin²x=0
2sinx(cosx+sinx)=0
sinx=0 , x=0+πn, n∈Z
cosx+sinx=0, это однородное уравнение - разделим обе части на cosx
1+tgx=0
tgx=-1
x=arctg(-1)+πn, n∈Z
x=-π/4+πn, n∈Z
ответ: х1= πn, n∈Z
x2=-π/4+πn, n∈Z
2) sin²x-3cos²x-2sinxcosx=0 /cos²x
tg²x-3-2tgx=0
tgx=a, a²-2a-3=0
D/4=1+3=4, a1=1-2=-1, a2=1+2=3
tgx=-1
x1=-π/4+πn, n∈Z
x2=arctg3+πn, n∈Z
3) cos2x+sin2x=0 /cos2x
1+tg2x=0,
tg2x=-1
2x=-π/4+πn, n∈Z
x=-π/8+πn/2, n∈Z