Постарайся ответить, не выполняя построение на координатной плоскости! 1. Один конец отрезка находится в начальной точке координатной системы O(0;0).
Другой конец A имеет координаты (34;0).
Определи координаты серединной точки C отрезка OA.
C(
;
).
2. Один конец отрезка находится в начальной точке координатной системы O(0;0).
Другой конец B имеет координаты (0;32).
Определи координаты серединной точки D отрезка OB.
D(
;
).
3. Один конец отрезка находится в точке M с координатами (34;32), другой конец N имеет координаты (38;8).
Определи координаты серединной точки K отрезка MN.
K(
;
).
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
D = 81-768=- 687
действительных корней нет
1) 4y^2 - 25y + 100=0
D = 625-1600, D<0 действительных корней нет
3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби:
(x+3)(x-2)=0
x+3=0 или x-2=0
x=-3 x=2
ответ: 2 (так как -3 не подходит по условию знаменателя)
4) Приведем к общему знаменателю:
(16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0
x не равен 0, 3 и - 3
16(x^2-9)+x^2(x-6)-x^2(x+3)=0
16x^2-144+x^3-6x^2-x^3-3x^2=0
7x^2=144
x1=12/√7
x2=- 12/√7