Наши действия: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка. 4) из всех результатов ищем наибольший( наименьший) и пишем ответ. поехали? 1)f'(x) = 3x^2 -12 2)3x^2 -12 = 0 3x^2 = 12 x^2 = 4 x = +-2 3) из этих чисел в указанный промежуток [0;3] попал х = 2 f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9 f(0) = 0^3 -12*0 +7 = 7 f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2 4) ответ: max f(x) = f(0) = 7 minf(x) = f(2) = -9
1,5 • 2⁴ - 3² = 15
1)2⁴ = 16
2)3² = 9
4)1,5 • 16 = 24
5)24 - 9 = 15
Предоставьте в виде степени выражения :
1)а7 • а4=а7+4=11
2)а7 : а4=а7-4 =а3
3)(а7)4=а7•4=а28
Преобразуйте выражения в одночлен стандартного вида :
1)-
2)-64а(в 6 степени)b( в 18 степени)
Предоставьте в виде многочлена стандартного вида выражения :
5А²-2А-3)-(2А²+2А-5)=
=5А²-2А-3-2А²-2А+5=
=3А²-4А+2
Упростить выражения :
81х5у
81х5=405
405у
Вместо звёздочки запишите такой многочлен чтобы образовалось тождество :
5х² -3ху -у²) - (4х²-у²)=5х² -3ху -у² -4х²+у²=х² -3ху
Докажите что значение выражения (14n+19)-(8n-5) кратко 6 при любом натуральном значении n :
14n+19)-(8n-5)= 6n+24 = 6*(n+8) - кратно 6.
Известно что 4а3b=-5 найдите значения выражения :
1) Преобразуем выражение следующим образом:
-8a^3b = -2 * 4a^3b;
Подставим заданное значение 4a^3b = -5 в преобразованное выражение.
Если 4a^3b = -5, тогда -2 * 4a^3b = -2 * (-5) = 10;
2) Преобразуем выражение следующим образом:
4a^6b^2 = 4 * (a^3b) ^ 2;
Найдем из заданного равенства 4a^3b = -5 значение a^3b;
a^3b = -5 : 4;
a^3b = -5/4;
Подставим найденное значение a^3b = -1,25 в преобразованное выражение.
Если a^3b = -5/4, тогда 4 * (a^3b) ^ 2 = 4 * (-5/4) ^ 2 = 4 * 25/16 = 25/4 = 6,25;
2) приравниваем её к нулю и решаем уравнение
3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка.
4) из всех результатов ищем наибольший( наименьший) и пишем ответ.
поехали?
1)f'(x) = 3x^2 -12
2)3x^2 -12 = 0
3x^2 = 12
x^2 = 4
x = +-2
3) из этих чисел в указанный промежуток [0;3] попал х = 2
f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9
f(0) = 0^3 -12*0 +7 = 7
f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2
4) ответ: max f(x) = f(0) = 7
minf(x) = f(2) = -9