6.Возьмём за x - скорость по шоссе. Тогда время его ходьбы по шоссе равен 5/x. Так скорость по лесу на 3 км меньше, то можно записать её как x-3. Тогда время ходьбы по лесу равен 6/(x-3). Всего они шли 240 минут. Получим уравнение:
5/x + 6/(x-3)=240
Приведём к общему знаменателю.
5(x-3) + 6x = 4(x^2 - 3x)
5x - 15 + 6x =4x^2 - 12x
11x - 15 =4x^2 - 12x
4x^2 - 23x + 15=0
D= (-23)^2 - 4 * 4 * 15 = 529 -240=289
x1= (23 + 17)/2*4=5 - подходит
x2= (23-17)/2*4 = 0.75 - не подходит
След-но, скорость пешехода по шоссе - 5км/ч, а по лесу - 2км/ч
1. 32
2. 3
3. x1= -4 x2=-2
4 А-2 B-1 C-3
5 x равно-больше 2,9 или 29/10
6.Возьмём за x - скорость по шоссе. Тогда время его ходьбы по шоссе равен 5/x. Так скорость по лесу на 3 км меньше, то можно записать её как x-3. Тогда время ходьбы по лесу равен 6/(x-3). Всего они шли 240 минут. Получим уравнение:
5/x + 6/(x-3)=240
Приведём к общему знаменателю.
5(x-3) + 6x = 4(x^2 - 3x)
5x - 15 + 6x =4x^2 - 12x
11x - 15 =4x^2 - 12x
4x^2 - 23x + 15=0
D= (-23)^2 - 4 * 4 * 15 = 529 -240=289
x1= (23 + 17)/2*4=5 - подходит
x2= (23-17)/2*4 = 0.75 - не подходит
След-но, скорость пешехода по шоссе - 5км/ч, а по лесу - 2км/ч
Объяснение:
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
(z+v)/9-(z-v)/3=2
(2z-v)/6-(3z+2v)/3=−20
Первое уравнение умножить на 9, второе на 6, чтобы избавиться от дроби:
(z+v)-3(z-v)=18
(2z-v)-2(3z+2v)=−120
Раскроем скобки:
z+v-3z+3v=18
2z-v-6z-4v= -120
Приведём подобные члены:
4v-2z=18
-4z-5v= -120
Разделим первое уравнение на 2, второе на 5 для удобства вычислений:
2v-z=9
-0,8z-v= -24
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-z=9-2v
z=2v-9
-0,8(2v-9)-v= -24
-1,6v+7,2-v= -24
-2,6v= -24-7,2
-2,6v= -31,2
v= -31,2/-2,6
v=12
z=2v-9
z=2*12-9
z=24-9
z=15
Решение системы уравнений v=12
z=15