В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Madi74153
Madi74153
15.06.2022 03:15 •  Алгебра

Построить график функций y=x^3+2x^2-3x/x с подробным решением

Показать ответ
Ответ:

x=12, min((16/x)+(x/9))=8/3

Объяснение:

Часть теоремы о средних - неравенство между средним арифметическим и средним геометрическим(неравенство Коши)

(16/x)+(x/9)≥2√((16/x)(x/9))=2√(16/9)=2·4/3=8/3

Равенство достигается при 16/x=x/9⇔x²=144⇔x=±12

x>0⇒x=12

min((16/x)+(x/9))=8/3

Можно решить и другим

Рассмотрим функцию f(x)=16/x+x/9 при x>0. Найдём промежутки её монотонности.

f '(x)=-16/x²+1/9=(x²-144)/(9x²)=(x-12)(x+12)/(9x²)

x∈(0;12)⇒f '(x)<0⇒f↓

x∈(12;+∞)⇒f '(x)>0⇒f↑

minf(x)=f(12)=16/12+12/9=4/3+4/3=8/3

x∈(0;+∞)

0,0(0 оценок)
Ответ:
sadlyuda
sadlyuda
13.08.2020 02:29

Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:

1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;

2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;

3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;

4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;

5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;

6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;

7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;

8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;

9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.

Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).

Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:

S = ∫(х^2)dx (верхний предел 2, нижний 0).

Интегрируем с формулы интегрирования:

∫х^ n dx = x^(n+1) / n+1,

и получаем выражение х^3/3.

Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.

ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.

Подробнее - на -

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота