ответ: 21 км/час.
Объяснение:
Катер по течению за 6 ч. проплыл такое же расстояние, какое проплывает за 8 ч. против течения. Скорость течения реки равна 3 км/ч. Вычислили скорость катера в стоячей воде.
Решение.
х км/час - скорость катера в стоячей воде. Тогда
х+3 км/час - скорость катера по течению и
х-3 км/час - скорость катера против течения.
S=vt. s1=6(x+3)км катер по течению
катер против течения.
По условию s1=s2;
6(x+3)=8(x-3);
6x+18=8x-24;
6x-8x=-24-18;
-2x= -42;
x=21 км/час - скорость катера в стоячей воде.
Построим график функцииy=|x+2|+|x-2|y=∣x+2∣+∣x−2∣
Для начала упростим функцию
Найдем знаки под модульного выражения
\begin{gathered} \left[\begin{array}{ccc}x+2=0\\ x-2=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=-2\\ x_2=2\end{array}\right\end{gathered}
_-__-__(-2)__+__-__(2)__+__+__
\begin{gathered}y=|x+2|+|x-2|= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-x-2-x+2}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {x+2-x+2}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {x+2+x-2}} \right. \end{array}\right= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-2x}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {4}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {2x}} \right. \end{array}\right\end{gathered}
Наименьшее положительное значение параметра а найдем с параллельности прямых
График функции y=|x+2|+|x-2|y=∣x+2∣+∣x−2∣параллельный прямой y-ax+a-3=0y−ax+a−3=0 если угловые коэффициенты будут совпадать, т.е. k=\pm2k=±2
Но нам важен положительный параметр, значит a=2a=2 - минимальный.
Исследуем когда график будет касаться в точке (2;4) и (-2;4)
Подставив значения х=2 и у=4, получим
\begin{gathered}4-2a+a-3=0\\ 1-a=0\\ a=1\end{gathered}4−2a+a−3=01−a=0a=1
При а=1 система уравнений имеет одно решение
Если подставить x=-2x=−2 и y=4y=4 , получим
\begin{gathered}4+2a+a-3=0\\ 3a=-1\\ a=- \frac{1}{3} \end{gathered}4+2a+a−3=03a=−1a=−31
Наименьший параметр а=1.
ответ: 21 км/час.
Объяснение:
Катер по течению за 6 ч. проплыл такое же расстояние, какое проплывает за 8 ч. против течения. Скорость течения реки равна 3 км/ч. Вычислили скорость катера в стоячей воде.
Решение.
х км/час - скорость катера в стоячей воде. Тогда
х+3 км/час - скорость катера по течению и
х-3 км/час - скорость катера против течения.
S=vt. s1=6(x+3)км катер по течению
катер против течения.
По условию s1=s2;
6(x+3)=8(x-3);
6x+18=8x-24;
6x-8x=-24-18;
-2x= -42;
x=21 км/час - скорость катера в стоячей воде.
Построим график функцииy=|x+2|+|x-2|y=∣x+2∣+∣x−2∣
Для начала упростим функцию
Найдем знаки под модульного выражения
\begin{gathered} \left[\begin{array}{ccc}x+2=0\\ x-2=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=-2\\ x_2=2\end{array}\right\end{gathered}
_-__-__(-2)__+__-__(2)__+__+__
\begin{gathered}y=|x+2|+|x-2|= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-x-2-x+2}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {x+2-x+2}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {x+2+x-2}} \right. \end{array}\right= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-2x}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {4}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {2x}} \right. \end{array}\right\end{gathered}
Наименьшее положительное значение параметра а найдем с параллельности прямых
График функции y=|x+2|+|x-2|y=∣x+2∣+∣x−2∣параллельный прямой y-ax+a-3=0y−ax+a−3=0 если угловые коэффициенты будут совпадать, т.е. k=\pm2k=±2
Но нам важен положительный параметр, значит a=2a=2 - минимальный.
Исследуем когда график будет касаться в точке (2;4) и (-2;4)
Подставив значения х=2 и у=4, получим
\begin{gathered}4-2a+a-3=0\\ 1-a=0\\ a=1\end{gathered}4−2a+a−3=01−a=0a=1
При а=1 система уравнений имеет одно решение
Если подставить x=-2x=−2 и y=4y=4 , получим
\begin{gathered}4+2a+a-3=0\\ 3a=-1\\ a=- \frac{1}{3} \end{gathered}4+2a+a−3=03a=−1a=−31
Наименьший параметр а=1.