Объяснение:
1). y²-y-12=0; D=1+48=49
y₁=(1-7)/2=-6/2=-3
y₂=(1+7)/2=8/2=4
ответ: -3; 4.
2). 5x²+10x-15=0 |5
x²+2x-3=0; D=4+12=16
x₁=(-2-4)/2=-6/2=-3
x₂=(-2+4)/2=2/2=1
ответ: -3; 1.
3). -x²-8x+9=0 |×(-1)
x²+8x-9=0; D=64+36=100
x₁=(-8-10)/2=-18/2=-9
x₂=(-8+10)/2=2/2=1
ответ: -9; 1.
4). Видимо в условии было дано такое выражение:
5y²+2y-3=0; D=4+60=64
y₁=(-2-8)/10=-10/10=-1
y₂=(-2+8)/10=6/10=0,6
ответ: -1; 0,6.
5). y²+9y+18=0; D=81-72=9
y₁=(-9-3)/2=-12/2=-6
y₂=(-9+3)/2=-6/2=-3
ответ: -6; -3.
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
Объяснение:
1). y²-y-12=0; D=1+48=49
y₁=(1-7)/2=-6/2=-3
y₂=(1+7)/2=8/2=4
ответ: -3; 4.
2). 5x²+10x-15=0 |5
x²+2x-3=0; D=4+12=16
x₁=(-2-4)/2=-6/2=-3
x₂=(-2+4)/2=2/2=1
ответ: -3; 1.
3). -x²-8x+9=0 |×(-1)
x²+8x-9=0; D=64+36=100
x₁=(-8-10)/2=-18/2=-9
x₂=(-8+10)/2=2/2=1
ответ: -9; 1.
4). Видимо в условии было дано такое выражение:
5y²+2y-3=0; D=4+60=64
y₁=(-2-8)/10=-10/10=-1
y₂=(-2+8)/10=6/10=0,6
ответ: -1; 0,6.
5). y²+9y+18=0; D=81-72=9
y₁=(-9-3)/2=-12/2=-6
y₂=(-9+3)/2=-6/2=-3
ответ: -6; -3.
Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)