Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
Чему равна вероятность того, что случайно выбранный горшок будет с дефектами (вероятность события A)?
Так как в данном случае вероятность - отношение числа благоприятных исходов к числу всех исходов, то:
P(A) = 28 / 400 = 0.07
Чему равна вероятность того, что случайно выбранный горшок не имеет дефектов (вероятность события B)?
Так как события A и B - противоположные, то есть ровно одно из них сбудется для одного произвольно выбранного горшка, то:
P(B) = 1 - P(A) = 1 - 0.07 = 0.93
Задача решена!
ответ: 0.93.(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4