Участник Знаний
1.~ a)~ (x+4)^2=x^2+8x+16\\ b)~ (y-5x)^2=y^2-10xy+25y^2\\ c)~ (3a-2)(3a+2)=(3a)^2-2^2=9a^2-4\\ d)~ (c-2b)(c+2b)=c^2-(2b)^2=c^2-4b^2
2. Разложить на множители:
a)~ x^2-81=x^2-9^2=(x-9)(x+9)\\ b)~ y^2-4y+4=(y-2)^2
в пункте б) опечатка, так что предположил как должно быть
c)~ 36x^4y^2-169c^2=(6x^2y)^2-(13c)^2=(6x^2y-13c)(6x^2y+13c)\\ d)~ (x+1)^2-(x-1)^2=(x+1-x+1)(x+1+x-1)=2\cdot 2x=4x
3. Упростить выражение:
(c+6)^2-c(c+12)=c^2+12c+36-c^2-12c=36
4. Решите уравнение:
a)~ (x+7)^2-(x-4)(x+4)=65\\ x^2+14x+49-x^2+16=65\\ 14x=0\\ x=0
b)~ 49y^2-64=0\\ y^2=\dfrac{64}{49}~~\Rightarrow~~~ y_{1,2}=\pm\dfrac{8}{7}
5. Выполнить действия:
a)~ (4a^2+b^2)(2a-b)(2a+b)=(4a^2+b^2)(4a^2-b^2)=16a^4-b^4\\ b)~ (b^2c^3-2a^2)(b^2c^3+2a^2)=(b^2c^3)^2-(2a^2)^2=b^4c^6-4a^4
6*.Докажите неравенство:
4x^2+9y^2>12xy-0.1\\ 4x^2-12xy+9y^2>-0.1\\ (2x-3y)^2>-0.1
Что и требовалось доказать
Объяснение:
В решении.
Какова область определения функции у = 5/√8х - 4х²?
Область определения - это значения х, при которых функция существует, проекция графика на ось Ох.
Обозначение D(f) или D(у).
Дана функция у = 5/√8х - 4х²
Так как в данном выражении в знаменателе корень, подкоренное выражение должно быть больше либо равно нулю.
Функция определена, если знаменатель не равен нулю.
Поэтому найти значения х через неравенство:
8х - 4х² > 0
Приравнять к нулю и решить как квадратное уравнение:
8х - 4х² = 0 (неполное квадратное уравнение)
4х(2 - х) = 0
Приравнять множители поочерёдно к нулю:
4х = 0
х₁ = 0;
2 - х = 0
-х = -2
х₂ = 2.
При х=0 и х=2 подкоренное выражение равно нулю, что не допустимо.
Поэтому х может быть любым, кроме х=0 и х=2.
Область определения D(у) = х∈R : х≠0; х≠2.
Участник Знаний
1.~ a)~ (x+4)^2=x^2+8x+16\\ b)~ (y-5x)^2=y^2-10xy+25y^2\\ c)~ (3a-2)(3a+2)=(3a)^2-2^2=9a^2-4\\ d)~ (c-2b)(c+2b)=c^2-(2b)^2=c^2-4b^2
2. Разложить на множители:
a)~ x^2-81=x^2-9^2=(x-9)(x+9)\\ b)~ y^2-4y+4=(y-2)^2
в пункте б) опечатка, так что предположил как должно быть
c)~ 36x^4y^2-169c^2=(6x^2y)^2-(13c)^2=(6x^2y-13c)(6x^2y+13c)\\ d)~ (x+1)^2-(x-1)^2=(x+1-x+1)(x+1+x-1)=2\cdot 2x=4x
3. Упростить выражение:
(c+6)^2-c(c+12)=c^2+12c+36-c^2-12c=36
4. Решите уравнение:
a)~ (x+7)^2-(x-4)(x+4)=65\\ x^2+14x+49-x^2+16=65\\ 14x=0\\ x=0
b)~ 49y^2-64=0\\ y^2=\dfrac{64}{49}~~\Rightarrow~~~ y_{1,2}=\pm\dfrac{8}{7}
5. Выполнить действия:
a)~ (4a^2+b^2)(2a-b)(2a+b)=(4a^2+b^2)(4a^2-b^2)=16a^4-b^4\\ b)~ (b^2c^3-2a^2)(b^2c^3+2a^2)=(b^2c^3)^2-(2a^2)^2=b^4c^6-4a^4
6*.Докажите неравенство:
4x^2+9y^2>12xy-0.1\\ 4x^2-12xy+9y^2>-0.1\\ (2x-3y)^2>-0.1
Что и требовалось доказать
Объяснение:
В решении.
Объяснение:
Какова область определения функции у = 5/√8х - 4х²?
Область определения - это значения х, при которых функция существует, проекция графика на ось Ох.
Обозначение D(f) или D(у).
Дана функция у = 5/√8х - 4х²
Так как в данном выражении в знаменателе корень, подкоренное выражение должно быть больше либо равно нулю.
Функция определена, если знаменатель не равен нулю.
Поэтому найти значения х через неравенство:
8х - 4х² > 0
Приравнять к нулю и решить как квадратное уравнение:
8х - 4х² = 0 (неполное квадратное уравнение)
4х(2 - х) = 0
Приравнять множители поочерёдно к нулю:
4х = 0
х₁ = 0;
2 - х = 0
-х = -2
х₂ = 2.
При х=0 и х=2 подкоренное выражение равно нулю, что не допустимо.
Поэтому х может быть любым, кроме х=0 и х=2.
Область определения D(у) = х∈R : х≠0; х≠2.