Постройте график функции: = −22 + 8 − 8 По графику найдите: а) значения х, при которых значения функции положительны, отрицательны; б) найти промежутки возрастания и убывания функции; в) выяснить, при каком значении х наибольшее и наименьшее значение и найти это значение. 6. Найти координаты точек пересечения графиков функций: = 32 и = 2 − 5
ответ: 1
--------------------------------------
если коэффициенты действительно такие, то это уравнение решается лишь за формулами Кардано (на подобие формул корней квадратного уравнения, только для уравнения 4-го степени).
И тут не применишь и метод неопределенных коэффициентов (ax^2+bx+c)(dx^2+ex+f)=5x^4-12x^3+11x^2-12x+5, так как коэффициенты b,c,e,f - иррациональны.
Формулы Кардано в обычном курсе алгебры в школе не изучают, в углубленном курсе кажется так же не изучают.
Прикрепляю скрин
,
,
,
,
,
два случая:
1)
2)
ответ: 1 и 5
------------------------------
- парабола ветками вверх, нам нужен случай, когда вершина параболы лежит на оси ОХ, т.е. когда парабола пересекает эту ось в одной точке.
И это будет тогда и только тогда, когда дискриминант обращается в нуль:
Получили, что это случается если
ответ: 4; 12.
5x² - 12x + 11 - 12/x + 5/x² = 0
5x² + 5/x² - 12x - 12/x + 11 = 0
5x² + 10 + 5/x² - 12x - 12/x - 10 + 11 = 0
5(x² + 2 + 1/x²) - 12(x + 1/x) + 1 = 0
5(x + 1/x)² - 12(x + 1/x) + 1 = 0
Пусть t = x + 1/x
5t² - 12t + 1 = 0
D = 144 - 5·4 = 144 - 20 = 124 = (2√31)²
t₂ = (12 + 2√31)/10 = (6 + √31)/5
t₂ = (12 - 2√31)/10 = (6 - √31)/5
Обратная замена:
1) x + 1/x = (6 + √31)/5
5x² + 5 = x(6 + √31)
5x² - x(6 + √31) + 5 = 0
2) x + 1/x = (6 - √31)/5
5x² + 5 = x(6 - √31)
5x² - x(6 - √31) + 5 = 0
ответ: