Решим данную задачу, составив систему уравнений. Пусть детский билет стоит х (икс) рублей, а взрослый билет – у (игрек) руб. Тогда первая семья за свои билеты заплатила: (х · 2 + у) = 415 рублей. А вторая семья заплатила: (х · 3 + у · 2) = 720 рублей. Из первого уравнения выразим значение у (игрека): у = (465 – х · 2) и подставим его во второе уравнение:
х · 3 + (465 – х · 2) · 2 = 720;
х · 3 + 930 – х · 4 = 720;
- х = 720 – 930;
- х = - 210;
х = 210 (руб.) – цена детского билета.
Определим, сколько стоит взрослый билет: у = (415 – х · 2) = (415 – 210 · 2) = 410 (руб.).
ответ: детский билет стоит 210 рублей, а взрослый – 410 рублей..
Объяснение:
Для того, чтобы найти координаты точки пересечения графиков функций y = 1.5x и 2y + 2x = 27, необходимо решить систему уравнений:
y = 1.5x;
2y + 2x = 27.
Решения данной системы уравнений и будет координатами точки пересечения графиков данных функций.
Решаем данную систему уравнений.
Подставляя во второе уравнение значение y = 1.5x из первого уравнения, получаем:
2 * 1.5x + 2x = 27;
3х + 2х = 27;
5х = 27;
х = 27 / 5;
х = 5.4.
Зная х, находим у:
y = 1.5x = 1.5 * 5.4 = 8.1.
ответ: координаты точки пересечения графиков данных функций (5.4; 8.1)
Решим данную задачу, составив систему уравнений. Пусть детский билет стоит х (икс) рублей, а взрослый билет – у (игрек) руб. Тогда первая семья за свои билеты заплатила: (х · 2 + у) = 415 рублей. А вторая семья заплатила: (х · 3 + у · 2) = 720 рублей. Из первого уравнения выразим значение у (игрека): у = (465 – х · 2) и подставим его во второе уравнение:
х · 3 + (465 – х · 2) · 2 = 720;
х · 3 + 930 – х · 4 = 720;
- х = 720 – 930;
- х = - 210;
х = 210 (руб.) – цена детского билета.
Определим, сколько стоит взрослый билет: у = (415 – х · 2) = (415 – 210 · 2) = 410 (руб.).
ответ: детский билет стоит 210 рублей, а взрослый – 410 рублей..