В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Постройте график и найдите промежутки знакопостоянства функции y=f(x)


Постройте график и найдите промежутки знакопостоянства функции y=f(x)

Показать ответ
Ответ:
20042007rbn
20042007rbn
05.09.2022 23:17
1) 1) найдите значение производной функции  y=cosx-2sinx в точке Xo =3π/2. 
 y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) =  - sin(3π/2) -2cos(3π/2)  = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3 
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5  =  3(x +5/3)(x -1) .
y '      +                                     -                         +   
- 5/3 max  1  min

3 )Решите уравнение  -2sin²x-cosx+1=0
 Укажите корни, принадлежащие отрезку          П    ?            

-2sin²x-cosx+1=0 ;  x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
 
производим замену переменной  t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.

[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k  , k∈Z .

ответ :   2π/3 .
0,0(0 оценок)
Ответ:
Kazhyal
Kazhyal
13.09.2021 15:47

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота