прямая; прямая параллельная оси координат; координатная плоскость; ничего (пустое множество).
Объяснение:
Линейное уравнение с двумя переменными имеет вид: ах + by + c = 0. Графиком данного уравнения, в общем виде, является прямая. Если только один коэффициент при переменной отличен от нуля, то графиком такого уравнения будет прямая, параллельная одной из осей координат. Если оба коэффициента при переменных равны 0, и с = 0, то графиком будет вся координатная плоскость. А если при данных условиях с ≠ 0, то графиком будет пустое множество. Если же оба коэффициента при переменных отличны от 0, то прямая может быть абсолютно любой.
Это линейная функция
1) Область определения - множество R
2) Область значений - множество R, если к не равно 0, а если к =0, то число b
3) При к не равно 0, функция ни парная ни непарная; если к =0, то функция парная; если b =0, то функция непарная
4) При к>0 функция возрастает, при к <0 функция убывает, при к =0 постоянная
5) Функция не имеет экстремумов
6) График - прямая, не проходящая через начало координат
7) При b =0 функция имеет вид у = кх. график - прямая, проходящая через начало координат
прямая; прямая параллельная оси координат; координатная плоскость; ничего (пустое множество).
Объяснение:
Линейное уравнение с двумя переменными имеет вид: ах + by + c = 0. Графиком данного уравнения, в общем виде, является прямая. Если только один коэффициент при переменной отличен от нуля, то графиком такого уравнения будет прямая, параллельная одной из осей координат. Если оба коэффициента при переменных равны 0, и с = 0, то графиком будет вся координатная плоскость. А если при данных условиях с ≠ 0, то графиком будет пустое множество. Если же оба коэффициента при переменных отличны от 0, то прямая может быть абсолютно любой.