Постройте график линейной функции .В каждом случае укажите: возрастающей или убывающей является функция; при каких значениях х значения функции равны нулю, больше нуля, меньше нуля: а) у=0,8х; б)у=-2х+1; в)у=(1/3)х-2
Решить систему уравнений.Методом алгебраического сложения.
x/5-y/6=0
5x-4y=2
Нужно избавиться от дробного выражения в первом уравнении, общий знаменатель 30, надписываем над числителями дополнительные множители:
6*х-5*у=0
6х-5у=0
5х-4у=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, коэффициенты или при х, или при у были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают одно из уравнений, как бы подгоняют ко второму, можно умножать обе части уравнения на одно и то же число, делить.
Поэтому первое уравнение умножим на -5, а второе на 6:
-30х+25у=0
30х-24у=12
Складываем уравнения:
-30х+30х+25у-24у=12
у=12
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
Решение системы уравнений х=10
у=12
Объяснение:
Решить систему уравнений.Методом алгебраического сложения.
x/5-y/6=0
5x-4y=2
Нужно избавиться от дробного выражения в первом уравнении, общий знаменатель 30, надписываем над числителями дополнительные множители:
6*х-5*у=0
6х-5у=0
5х-4у=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, коэффициенты или при х, или при у были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают одно из уравнений, как бы подгоняют ко второму, можно умножать обе части уравнения на одно и то же число, делить.
Поэтому первое уравнение умножим на -5, а второе на 6:
-30х+25у=0
30х-24у=12
Складываем уравнения:
-30х+30х+25у-24у=12
у=12
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
5х-4*12=2
5х-48=2
5х=2+48
5х=50
х=10
Решение системы уравнений х=10
у=12
1 завдання
(a₁ = -3
d = 4)
2 завдання (n= 3 )
Объяснение:
aₙ = a₁ + d(n-1)
a₅ = a₁ + d(5-1)
13 = a₁ + 4d
a₁₅ = a₁ + d(15-1)
53 = a₁ + 14d
a₁ + 4d = 13
a₁ + 14d =53
Система двох лінійних рівнянь з двома невідомими. Розвяжемо методом додавання, для цього помножимо перше рівняння на (-1) і додамо до другого рівняння
-a₁ -4d = -13
a₁ + 14d =53
a₁ + (-a₁) -4d + 14d = -13 + 53
10d = 40
d =40/10
d = 4
Підставимо d у будь-яке з рівняннь для вирахування а
a₁ + 4 * 4 =13
a₁ = 13-16
a₁ = -3
2) Sₙ = ((2a₁ + d(n-1))2)n
Підставимо відомі нам числа
30 = ((12*2 + (-2)*(n -1))2)n
30 = ((24 -2n +2)*n)2
60 = (26-2n)*n
26n - 2n² -60 = 0
-2n² + 26n -60 = 0
n² -13n + 30 =0
D = 13*13 - 4*30
D = 169 - 120
D = 49
√D = 7
n₁ = (13 + 7)/2 = 20/2 = 10 - не підходить
n₂ = (13-7)/2= 6/2 = 3