Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти Х и Y, потому что точка пересечения состоит их X и Y.Найдем X, в первом пункте где мы выражали туда подставляем Y.
x=3+10y x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную X, а на втором переменную Y.
N, n+1, n+2 - три последовательных натуральных числа n+(n+1)+(n+2)=3n+3=3(n+1) Т.к. один из множителей произведения равен 3, то всё произведение делится на 3.
n(n+1)(n+2) Воспользуемся признаком делимости на 6: На 6 делятся числа, которые одновременно делятся и на 2 и на 3. Из трёх последовательных натуральных чисел всегда найдётся не менее одного чётного, т.е. делящегося на 2. На 3 делится каждое третье натуральное число, следовательно, из трёх последовательных множителей обязательно будет один, делящийся на 3. Получаем, что в произведении n(n+1)(n+2) один из множителей делится на 2, а другой на 3, значит всё произведение делится на 6.
дана система:
2x+5y=1
x-10y=3
1. Выражаем
Видно что во втором уравнении имеется переменная X с коэффициентом 1,отсюда получается что легче всего выразить переменную Х из второго уравнения.
x=3+10y
2. После того как выразили подставляем в первое уравнение 3+10y вместо переменной Х.
2(3+10y)+5y=1
3. Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти Х и Y, потому что точка пересечения состоит их X и Y.Найдем X, в первом пункте где мы выражали туда подставляем Y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную X, а на втором переменную Y.
ответ: (1; -0,2)
n+(n+1)+(n+2)=3n+3=3(n+1)
Т.к. один из множителей произведения равен 3, то всё произведение делится на 3.
n(n+1)(n+2)
Воспользуемся признаком делимости на 6: На 6 делятся числа, которые одновременно делятся и на 2 и на 3.
Из трёх последовательных натуральных чисел всегда найдётся не менее одного чётного, т.е. делящегося на 2.
На 3 делится каждое третье натуральное число, следовательно, из трёх последовательных множителей обязательно будет один, делящийся на 3.
Получаем, что в произведении n(n+1)(n+2) один из множителей делится на 2, а другой на 3, значит всё произведение делится на 6.