Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
1) и 3)
Объяснение:
Для замены неравенства (x − 14) ⋅ (x + 12) ≤ 0
следует выбрать ту систему, которая обеспечивает отрицательный знак произведения, то есть
1) {x−14≥0
{x+12≤0
и
3) {x−14≤0
{x+12≥0
Дополнительно, решим неравенство
Рассматривая систему неравенств 1), видим, что она сводится к системе
{х ≥ 14
{х ≤ -12
Очевидно, что данная система решений не имеет
Рассматривая систему неравенств 3), видим, что она сводится к системе
{х ≤ 14
{х ≥ -12
Очевидно, что данная система имеет решение х ∈ [-12; 14]
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.