Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
У=-х²+4х+5=-(х-2)²+9 Строим у=-х²,сдвигаем ось ох на 9 единичный отрезков вниз и ось оу на 2 единичный отрезка влево.Вершина в точке (2;9)-точка максимума,точки пересечения с осями (0;5),(-1;0),(5;0) а) значение у,при x=4, у=5 x=-0,5; у≈3 б) значение х, при y=2; х≈-0,7 х≈4,7 в) нули функции; (0;5),(-1;0),(5;0) г) промежутки в которых у > 0 (-1;5) и в которых у <0; (-∞;-1) и (5;∞) д) промежуток,в котором функция возрастает, (-∞;2) убывает; (2;∞) е) область определения (-∞;∞) и область значений функции. (-∞;9]
Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят).
Если то уравнение имеет 1 решение (корень).
Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Если не понятно.
То вот:
Строим у=-х²,сдвигаем ось ох на 9 единичный отрезков вниз и ось оу на 2 единичный отрезка влево.Вершина в точке (2;9)-точка максимума,точки пересечения с осями (0;5),(-1;0),(5;0)
а) значение у,при x=4, у=5 x=-0,5; у≈3
б) значение х, при y=2; х≈-0,7 х≈4,7
в) нули функции; (0;5),(-1;0),(5;0)
г) промежутки в которых у > 0 (-1;5) и в которых у <0; (-∞;-1) и (5;∞)
д) промежуток,в котором функция возрастает, (-∞;2) убывает; (2;∞)
е) область определения (-∞;∞) и область значений функции. (-∞;9]
2)y=-2x²+4x-3=-2(x-1)²-1
Вершина (1;-1)-точка максимума
Наибольшее у=-1