Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
прибавим
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{x=11y-10
{43y=86
{x=11y-10
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение:
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]