Предельные издержки задаются выражением МC (q)=3q^2+5. И для объёма производства q=5, предельные издержки равны MC(5)=3000 руб. Определите функцию валовых затрат.
Модуль означает, что знак числа попросту отбрасывается. Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком). 1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак. х-4=0 → х=4. 2. Рассматриваем случай х<4 При этом выражение отрицательно, следовательно |x-4| = 4-x -3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6) 3. Рассматриваем случай x≥4 При этом выражение неотрицательно, поэтому |x-4| = х-4 -3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x) 4. Объединяя два эти выражения, получаем
Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком).
1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак.
х-4=0 → х=4.
2. Рассматриваем случай х<4
При этом выражение отрицательно, следовательно |x-4| = 4-x
-3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6)
3. Рассматриваем случай x≥4
При этом выражение неотрицательно, поэтому |x-4| = х-4
-3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x)
4. Объединяя два эти выражения, получаем
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0