x^2-2x-12+3x^2-6x-13=0 Произведем замену переменных. Пусть t=x^2-2x В результате замены переменных получаем вс уравнение. 3t-13+t^2-2t+1=0 Раскрываем скобки. 3t-13+t^2-2t+1=0 3t-13+1+t^2-2t=0 3t-12+t^2-2t=0 Приводим подобные члены. 1t-12+t^2=0 t-12+t^2=0 Изменяем порядок действий. t^2+t-12=0 Находим дискриминант. D=b^2-4ac=12-4•1-12=49 Дискриминант положителен, значит уравнение имеет два корня. Воспользуемся формулой корней квадратного уравнения. t1,2=-b±D/2a t1=-1-72•1=-4 ;t2=-1+72•1=3 ответ вс уравнения: t=-4;t=3 . В этом случае исходное уравнение сводится к уравнению x^2-2x=-4 ;x^2-2x=3 Теперь решение исходного уравнения разбивается на отдельные случаи. Случай 1 . x^2-2x=-4 Перенесем все в левую часть. x^2-2x+4=0 Находим дискриминант. D=b^2-4ac=-22-4•1•4=-12 Дискриминант отрицателен, значит уравнение не имеет корней. Итак,ответ этого случая: нет решений. Случай 2 . x^2-2x=3 Перенесем все в левую часть. x^2-2x-3=0 Находим дискриминант. D=b^2-4ac=-22-4•1-3=16 Дискриминант положителен, значит уравнение имеет два корня. Воспользуемся формулой корней квадратного уравнения. x1,2=-b±D/2a x1=2-42•1=-1 ;x2=2+42•1=3 Итак,ответ этого случая: x=-1;x=3 . Окончательный ответ: x=-1;x=3 .
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Произведем замену переменных.
Пусть t=x^2-2x
В результате замены переменных получаем вс уравнение.
3t-13+t^2-2t+1=0
Раскрываем скобки.
3t-13+t^2-2t+1=0
3t-13+1+t^2-2t=0
3t-12+t^2-2t=0
Приводим подобные члены.
1t-12+t^2=0
t-12+t^2=0
Изменяем порядок действий.
t^2+t-12=0
Находим дискриминант.
D=b^2-4ac=12-4•1-12=49
Дискриминант положителен, значит уравнение имеет два корня.
Воспользуемся формулой корней квадратного уравнения.
t1,2=-b±D/2a
t1=-1-72•1=-4 ;t2=-1+72•1=3
ответ вс уравнения: t=-4;t=3 .
В этом случае исходное уравнение сводится к уравнению
x^2-2x=-4 ;x^2-2x=3
Теперь решение исходного уравнения разбивается на отдельные случаи.
Случай 1 .
x^2-2x=-4
Перенесем все в левую часть.
x^2-2x+4=0
Находим дискриминант.
D=b^2-4ac=-22-4•1•4=-12
Дискриминант отрицателен, значит уравнение не имеет корней.
Итак,ответ этого случая: нет решений.
Случай 2 .
x^2-2x=3
Перенесем все в левую часть.
x^2-2x-3=0
Находим дискриминант.
D=b^2-4ac=-22-4•1-3=16
Дискриминант положителен, значит уравнение имеет два корня.
Воспользуемся формулой корней квадратного уравнения.
x1,2=-b±D/2a
x1=2-42•1=-1 ;x2=2+42•1=3
Итак,ответ этого случая: x=-1;x=3 .
Окончательный ответ: x=-1;x=3 .
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.