A) Область определения функции D(х)=R Область значений E(у)=[0; +∞) Нули функции: х=0 Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(-∞; 0). Функция возрастает при х∈(0; +∞) Функция ограничена снизу: у≥0 Экстремумы функии: у[min]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична. б) Область определения функции D(х)=R Область значений E(у)=(-∞; 0) Нули функции: х=0 Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(0; +∞). Функция возрастает при х∈(-∞; 0) Функция ограничена сверху: у≤0 Экстремумы функии: у[max]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична.
Скорее всего здесь речь идет об убывающей геометрической прогрессии...
для убывающей геометрической прогрессии Sn -> b1 / (1-q)
b1 / (1-q) = 3/4 ___ 4b1 = 3(1-q)
и сумма кубов тоже будет убывающей... => Sn3 -> (b1)^3 / (1-q^3)
(b1)^3 / (1-q^3) = 27/208
27(1-q)^3 / (64(1-q^3)) = 27/208
(1-q)^3 / ((1-q)(1+q+q^2)) = 4/13
(1-q)^2 / (1+q+q^2) = 4/13
13(1-2q+q^2) = 4(1+q+q^2)
13-26q+13q^2 - 4-4q-4q^2 = 0
3q^2 - 10q + 3 = 0
D = 100 - 4*9 = 64
q1 = (10 + 8)/6 = 3 ___ q2 = (10 - 8)/6 = 1/3
b1 = 1/2
Сумма квадратов членов прогрессии = (b1)^2 / (1-q^2) = 1/4 : 8/9 = 1/4 * 9/8 = 9/32
Область определения функции D(х)=R
Область значений E(у)=[0; +∞)
Нули функции: х=0
Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(-∞; 0).
Функция возрастает при х∈(0; +∞)
Функция ограничена снизу: у≥0
Экстремумы функии: у[min]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.
б)
Область определения функции D(х)=R
Область значений E(у)=(-∞; 0)
Нули функции: х=0
Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(0; +∞).
Функция возрастает при х∈(-∞; 0)
Функция ограничена сверху: у≤0
Экстремумы функии: у[max]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.