Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
S₁₈ = (10 + 95) / 2 · 18 = 105 · 9 = 945.
Відповідь: 945.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.