Английский язык
Преобразуйте слова, если это необходимо, так, чтобы они грамматически соответствовали содержанию текста.
Ladoga
Have you ever been to Ladoga? It is a small villag...
.Функция задана формулой f (х) = х2/5 – 6х. Найдите: 1) f (5) и f (–1); 2) нули функции. 2.Найдите область определения функции f (х) = (х + 6)/(х2 – 3 х – 4)
3.Постройте график функции f (х) = х2 – 8х +7.
Используя график, найдите:
1) область значений функции;
2) промежуток возрастания функции;
3) множество решений неравенства f (x) > 0.
34Постройте график функции: 1) f (х) = √х + 2; 2) f (х) = √[х + 2].
5.Найдите область определения функции f (х) = √[x + 3] + 8/(х2 – 36).
6.При каких значениях b и c вершина параболы у = –4х2 + bx + c находится в точке A (3; 1)?
Решите Очень вас! Желательно с полным расписанием действий и вычеслений!
1) Действия по решению линейного уравнения
y=9−2x
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
9−2x=y
Вычтите 9 из обеих частей уравнения.
−2x=y−9
Разделите обе части на −2.
−2
−2x
=
−2
y−9
Деление на −2 аннулирует операцию умножения на −2.
x=
−2
y−9
Разделите y−9 на −2.
x=
2
9−y
2) Действия по решению линейного уравнения
y=
x+3
x
Переменная x не может равняться −3, так как деление на ноль не определено. Умножьте обе части уравнения на x+3.
y(x+3)=x
Чтобы умножить y на x+3, используйте свойство дистрибутивности.
yx+3y=x
Вычтите x из обеих частей уравнения.
yx+3y−x=0
Вычтите 3y из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
yx−x=−3y
Объедините все члены, содержащие x.
(y−1)x=−3y
Разделите обе части на y−1.
y−1
(y−1)x
=−
y−1
3y
Деление на y−1 аннулирует операцию умножения на y−1.
x=−
y−1
3y
Переменная x не может равняться −3.
x=−
y−1
3y
, x
=−3
Объяснение: Где квадратик, там перечеркнутое равно
Преобразуйте слова, если это необходимо, так, чтобы они грамматически соответствовали содержанию текста.
Ladoga
Have you ever been to Ladoga? It is a small villag...
.Функция задана формулой f (х) = х2/5 – 6х. Найдите: 1) f (5) и f (–1); 2) нули функции. 2.Найдите область определения функции f (х) = (х + 6)/(х2 – 3 х – 4)
3.Постройте график функции f (х) = х2 – 8х +7.
Используя график, найдите:
1) область значений функции;
2) промежуток возрастания функции;
3) множество решений неравенства f (x) > 0.
34Постройте график функции: 1) f (х) = √х + 2; 2) f (х) = √[х + 2].
5.Найдите область определения функции f (х) = √[x + 3] + 8/(х2 – 36).
6.При каких значениях b и c вершина параболы у = –4х2 + bx + c находится в точке A (3; 1)?
Решите Очень вас! Желательно с полным расписанием действий и вычеслений!