40 - первое число.
24 - второе число.
Объяснение:
Різниця двох чисел дорівнює 16, а 20% зменшуваного на 2 більше, ніж 25% від'ємника. Знайдіть ці числа.
Составляем систему уравнений согласно условия задания:
х - первое число.
у - второе число.
х-у=16
0,2х-0,25у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=16+у
0,2(16+у)-0,25у=2
3,2+0,2у-0,25у=2
-0,05у=2-3,2
-0,05у= -1,2
у= -1,2/-0,05
у=24 - второе число.
Теперь вычислить х:
х=16+24
х=40 - первое число.
Проверка:
40-24=16
0,2*40-0,25*24=8-6=2, верно.
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
40 - первое число.
24 - второе число.
Объяснение:
Різниця двох чисел дорівнює 16, а 20% зменшуваного на 2 більше, ніж 25% від'ємника. Знайдіть ці числа.
Составляем систему уравнений согласно условия задания:
х - первое число.
у - второе число.
х-у=16
0,2х-0,25у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=16+у
0,2(16+у)-0,25у=2
3,2+0,2у-0,25у=2
-0,05у=2-3,2
-0,05у= -1,2
у= -1,2/-0,05
у=24 - второе число.
Теперь вычислить х:
х=16+у
х=16+24
х=40 - первое число.
Проверка:
40-24=16
0,2*40-0,25*24=8-6=2, верно.
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186