Обозначим через переменную х количество муки, которое находится во втором мешке.
Следовательно массу муки в первом мешке можем выразить через 5х
Зная, что после того, как из первого мешка пересыпали 12 кг муки во второй мешок, масса муки во втором мешке составила 5\7 массы муки в первом, составим уравнение и определим массу муки в каждом мешке изначально:
5/7 * (5х - 12) = х+ 12;
25х - 60 = 7х + 84;
18х = 144;
х = 8;
5 * 8 = 40.
ответ: Изначально в первом мешке было 40 кг муки, во втором - 8 кг.
ответ
Объяснение:
Обозначим через переменную х количество муки, которое находится во втором мешке.
Следовательно массу муки в первом мешке можем выразить через 5х
Зная, что после того, как из первого мешка пересыпали 12 кг муки во второй мешок, масса муки во втором мешке составила 5\7 массы муки в первом, составим уравнение и определим массу муки в каждом мешке изначально:
5/7 * (5х - 12) = х+ 12;
25х - 60 = 7х + 84;
18х = 144;
х = 8;
5 * 8 = 40.
ответ: Изначально в первом мешке было 40 кг муки, во втором - 8 кг.
v1 - скорость автобуса - ?
v2 - скорость грузовика
t1 - время автобуса
t2 - время грузовика
S=v1×t1=v2×t2
v1=v2+5
t1=t2- 8/60
20=v1×t1=(v2+5)(t2-8/60)
20=v2×t2 => t2=20/v2 => (подставляем в верхнее выражение)
20=(v2+5)(20/v2 - 2/15)=20+ 100/v2 -2v2/15 - 10/15 =>
100/v2 -2v2/15 - 10/15=0 - приводим к общему знаменателю:
- v2² -5v2+750=0
D=b²-4ac=25+3000=3025=55²
v2=(-b+√D) / 2a = (5+55) / (-2) = -30 (не является решением, т.к. v>0)
v2=(-b -√D) / 2a = (5-55) / (-2) = 25
v1=v2+5=30 (км/ч)