Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
x-2 – скорость катера против течения
x+2 – скорость катера по течению
Не забываем формулу S = v•t
Составляем уравнение:
30/(x-2) + 12/(x+2) = 44/x
Видим, что в знаменателях есть x-ы, ищем чему они не могут быть равны:
x-2 ≠ 0
x ≠ 2
x+2 ≠ 0
x ≠ -2
x ≠ 0
Теперь решаем, в конце не забыв учесть все запрещённые x:
30x(x+2) + 12x(x-2) = 44(x-2)(x+2)
30x² + 60x + 12x² - 24x = 44(x² - 4)
42x² + 36x = 44x² - 176
-2x² + 36x + 176 = 0
x² - 18x - 88 = 0
Решаю через выделение полного квадрата:
(x-9)² = 169
Находим первый x:
x-9 = -13
x₁ = -4
Находим второй x:
x-9 = 13
x₂ = 22
Теперь проверяем, что x₁ и x₂ не равны 2 или -2 или 0. Это так, значит они подходят.
Откидываем x₁, поскольку он отрицательный и оставляем x₂.
ответ: скорость катера по озеру равна 22 км/ч.
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч
Объяснение:
думаю ))