Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
у³ - 4 + 2у - 2у² = у²(у - 2) + 2(у - 2) = (у² + 2)(у - 2)
7с² - с - с³ + 7 = с²(7 - с) + (7 - с) = (с² + 1)(7 - с)
х³ + 28 - 14х² - 2х = х(х² - 2) - 14(х² - 2) = (х - 14)(х² - 2)
16ab² + 5b²c + 10c³ + 32ac² = 16a(b² + 2c²) + 5c(b² + 2c²) = (16a + 5c)(b² + 2c²)
20n² - 35a - 14an + 50n = 10n(2n + 5) - 7a(2n + 5) = (10n - 7a)(2n + 5)
40a³bc + 21bc - 56ac² - 15a²b² = 5a²b(8ac - 3b) - 7c(8ac - 3b) = (5a²b - 7c)(8ac - 3b)
16xy² - 5y²z - 10z³ + 32xz² = 16x(y² + 2z²) - 5z(y² + 2z²) = (16x - 5z)(y² + 2z²)