1 cпособ. n³+m³+k³=(n³-n)+(m³-m)+(k³-k)+(n+m+k)=n(n²-1)+m(m²-1)+k(k²-1)+(n+m+k)=(n-1)n(n+1)+(m-1)m(m+1)+(k-1)k(k+1)+(n+m+k). Т.к. произведение трех последовательных чисел делится на 6 и по условию n+m+k тоже делится на 6, то все доказано.
2 cпособ. Куб числа имеет такой же остаток при делении на 6, как и само число (это легко проверить, перебрав все числа вида 6k, 6k+1, ... 6k+5). По условию n+m+k делится на 6, т.е. сумма остатков от деления n, m, k делится на 6, а значит и сумма остатков кубов (у них те же остатки) тоже делится на 6.
Если n+m+k≡0 (mod 6), то n+m≡-k(mod 6). Значит -k³≡(n+m)³=n³+m³+3nm(n+m)≡n³+m³-3nmk (mod 6). Т.е. n³+m³+k³≡3nmk (mod 6). Т.к. среди чисел n, m, k обязательно есть четное (иначе их сумма была бы нечетным числом и значит не делилась бы на 6), то 3nmk≡0 (mod 6), т.е. n³+m³+k³≡0 (mod 6).
2x^2 + 7x - 4 = 0 Разделим на 2.
x^2 + 3.5x - 2 = 0
По теореме Виета x_1 = -4, х_2 = 0,5
2x^2 + 7x - 4 = 2(x - x_1) * (x - x_2) = 2(x + 4) * (x - 0.5)
2(x + 4) * (x - 0.5) - (x^2 - 4) * (x + 4) = 0
(x + 4) * (2x - 1 - x^2 + 4) = 0
Произведение равно нулю, кода один из сомножителей равен нулю.
1) x + 4 = 0 x_1 = -4
2) -x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
По теореме Виета х_2 = -1, х_3 = 3
х_1 + х_2 + х_3 = -4 + (-1) + 3 = -2
ответ. -2
Т.к. произведение трех последовательных чисел делится на 6 и по условию n+m+k тоже делится на 6, то все доказано.
2 cпособ. Куб числа имеет такой же остаток при делении на 6, как и само число (это легко проверить, перебрав все числа вида 6k, 6k+1, ... 6k+5). По условию n+m+k делится на 6, т.е. сумма остатков от деления n, m, k делится на 6, а значит и сумма остатков кубов (у них те же остатки) тоже делится на 6.
Если n+m+k≡0 (mod 6), то n+m≡-k(mod 6).
Значит -k³≡(n+m)³=n³+m³+3nm(n+m)≡n³+m³-3nmk (mod 6).
Т.е. n³+m³+k³≡3nmk (mod 6).
Т.к. среди чисел n, m, k обязательно есть четное (иначе их сумма была бы нечетным числом и значит не делилась бы на 6), то 3nmk≡0 (mod 6), т.е.
n³+m³+k³≡0 (mod 6).