Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника, является разделом геометрии, тригонометрические функции являются объектом изучения математического анализа, а тригонометрические уравнения изучаются методами алгебры.
Тригонометрические функции возникли в Древней Греции в связи с исследованиями в астрономии и геометрии. Отношения сторон в прямоугольном треугольнике, которые по существу и являются тригонометрическими функциями, встречаются уже в Ш в. до н. э. в работах Евклида, Архимеда, Аполлония Пергского и др. Тригонометрия от греческих: trigonom – “треугольник”, metreo – “измеряю”, изучает зависимость между сторонами и углами треугольника.
Тригонометрия возникла из пратических нужд человека. С ее можно определить расстояния до недоступных предметов. Она существенно упрощает процесс геодезической съемки местности, нужный для составления карт.
Зачатки тригонометрических познаний родились в древности. Жрецы постоянно наблюдали за небом, за перемещением звезд. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вс разделом.
Исторически теоремы синусов сферической геометрии предшествовали теоремам плоской геометрии. Потребность людей в знаниях по астрономии, необходимых для исчисления времени, возникла прежде других потребностей человека, связанных с измерением углов. Исходя из геоцентрической гипетезы Вселенной, древнегреческие астрономы рассматривали Землю как шар, находящийся в центре небесной сферы, которая рвномерно вращается вокруг своей оси. При изучении закономерностей движения светил возникли многочисленные математические задачи, связанные со свойствами сферы и фигур, которые образуют на ней большие окружности.
3 -5 3 | 1
2 7 -1 | 8
- от 2 строки отнимаем 1 ст. , умноженную на 3; от 3 ст. отнимаем 1 ст. , умноженную на 2
1 2 1 | 4
0 -11 0 | -11
0 3 -3 | 8
- 2 ст. делим на -11
1 2 1 | 4
0 1 0 | 1
0 3 -3 | 0
от 1 ст. стотнимаем отнимаем 2 ст., умноженную на 2; от 3 ст. отнимаем 2 ст., умножн. на 3
1 0 1 | 2
0 1 0 | 1
0 0 -3 | -3
3 ст. делим на -3
1 0 1 | 2
0 1 0 | 1
0 0 1 | 1
от 1 ст. отнимаем 3 ст., умноженную на 1
1 0 0 | 1
0 1 0 | 1
0 0 1 | 1
х= 1
y= 1
z= 1
3 2 1 | 5
2 3 1 | 1
2 1 3 | 11
1 ст. делим на 3
1 2/3 1/3 | 5/3
2 3 1 | 1
2 1 3 | 11
от 2 ст. отнимаем 1 ст, умноженную на 2; от 3 ст. отнимаем 1 ст, умноженную на 2
1 2/3 1/3 | 5/3
0 5/3 1/3 | -7/3
0 -1/3 7/3 | 23/3
2 ст. делим на 5/3
1 2/3 1/3 | 5/3
0 1 0,2 | - 1/4
0 -1/3 7/3 | 23/3
от 1 ст. отнимаем 2 ст., умноженную на 2/3; к 3 ст. прибавляем 2 ст., умноженную на 1/3
1 0 0,2 | 2,6
0 1 0,2 | - 1/4
0 0 2,4 | 7,2
3 ст. делим на 2,4
1 0 0,2 | 2,6
0 1 0,2 | -1,4
0 0 1 | 3
от 1 ст. отнимаем 3 ст., умноженную на 0,2; от 2 ст. отнимаем 3 ст. , умноженную на 0,2
1 0 0| 2
0 1 0|-2
0 0 1| 3
х= 2 y=-2 z=3
Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника, является разделом геометрии, тригонометрические функции являются объектом изучения математического анализа, а тригонометрические уравнения изучаются методами алгебры.
Тригонометрические функции возникли в Древней Греции в связи с исследованиями в астрономии и геометрии. Отношения сторон в прямоугольном треугольнике, которые по существу и являются тригонометрическими функциями, встречаются уже в Ш в. до н. э. в работах Евклида, Архимеда, Аполлония Пергского и др. Тригонометрия от греческих: trigonom – “треугольник”, metreo – “измеряю”, изучает зависимость между сторонами и углами треугольника.
Тригонометрия возникла из пратических нужд человека. С ее можно определить расстояния до недоступных предметов. Она существенно упрощает процесс геодезической съемки местности, нужный для составления карт.
Зачатки тригонометрических познаний родились в древности. Жрецы постоянно наблюдали за небом, за перемещением звезд. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вс разделом.
Исторически теоремы синусов сферической геометрии предшествовали теоремам плоской геометрии. Потребность людей в знаниях по астрономии, необходимых для исчисления времени, возникла прежде других потребностей человека, связанных с измерением углов. Исходя из геоцентрической гипетезы Вселенной, древнегреческие астрономы рассматривали Землю как шар, находящийся в центре небесной сферы, которая рвномерно вращается вокруг своей оси. При изучении закономерностей движения светил возникли многочисленные математические задачи, связанные со свойствами сферы и фигур, которые образуют на ней большие окружности.