Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
3/5+1/2= 3*2 + 1*5 /10=6+5 /10=11 /10= 1 1/10
3/8+1/3= 3*3+1*8 / 24= 9+8 /24=17/24
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)