4) Д( х-2 ) = R Д(х-4) = R\{4} все числа, кроме четырёх 7-2х>=0 -2х>=-7 х<=3,5 Рисуем на координатной прямой, отмечаем все полученные данные и получаем: Д(у) = (-оо;3,5]
Координаты точки пересечения графиков данных функций (1; 1)
Решение системы уравнений х=1
у=1
Объяснение:
3х+y=4
7х—2у=5 решить графически систему уравнений.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
3х+y=4 7х—2у=5
у=4-3х -2у=5-7х
2у=7х-5
у=(7х-5)/2
Таблицы:
х -1 0 1 х -1 0 1
у 7 4 1 у -6 -2,5 1
Согласно графика, координаты точки пересечения графиков данных функций (1; 1)
х^2-5х+6=0
х1*х2=6
х1+х2=5
х1=3
х2=2
Д(у)=(-оо;2)U(2;3)U(3;+oo)
2) эти уравнения должны быть больше или равны нулю, тк они под корнем, значит
1-4х>=0
2-2х>=0
—
|х<=1/4
|
|х<=1
—
Значит Д(у)=(-оо;1/4]
3) —
|х+4>=0 х>=-4
|
|х-1>0 (строго больше) х>1
—
Д(у)=(1;+оо)
4) Д( х-2 ) = R
Д(х-4) = R\{4} все числа, кроме четырёх
7-2х>=0
-2х>=-7
х<=3,5
Рисуем на координатной прямой, отмечаем все полученные данные и получаем:
Д(у) = (-оо;3,5]
Координаты точки пересечения графиков данных функций (1; 1)
Решение системы уравнений х=1
у=1
Объяснение:
3х+y=4
7х—2у=5 решить графически систему уравнений.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
3х+y=4 7х—2у=5
у=4-3х -2у=5-7х
2у=7х-5
у=(7х-5)/2
Таблицы:
х -1 0 1 х -1 0 1
у 7 4 1 у -6 -2,5 1
Согласно графика, координаты точки пересечения графиков данных функций (1; 1)
Значения таблиц это подтверждают.
Решение системы уравнений х=1
у=1