Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
x2 - 13x + 22 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-13)2 - 4·1·22 = 169 - 88 = 81Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 13 - √81 2·1 = 13 - 9 2 = 4 2 = 2x2 = 13 + √81 2·1 = 13 + 9 2 = 22 2 = 11
5x2 + 8x - 4 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
(х-4)^ 2=0x^2 - 8x + 16 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-8)2 - 4·1·16 = 64 - 64 = 0Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:x = 8 2·1 = 4
x2 + 2x + 3 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 22 - 4·1·3 = 4 - 12 = -8Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
(х-8)(х+3)=0x^2 -5x -24=0x2 - 5x - 24 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-5)2 - 4·1·(-24) = 25 + 96 = 121Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 5 - √121 2·1 = 5 - 11 2 = -6 2 = -3x2 = 5 + √121 2·1 = 5 + 11 2 = 16 2 = 8