Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/хСоставим уравнение:15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)15х(х+2)+6х(х-2)=22х^2-8815х^2+30x+6x^2-12x-22x^2+88=0-x^2+18x+88=0x^2-18x-88=0 Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.ответ: 22 км/ч
Если от первого вообще ничего не переплавлять со вторым, то r = 20%, если полностью сплавить с первым, то r = (3*0.1 + 2*0.2)/5 = 7/50 = 0.14 Отсюда можно сказать, что 14% <= r <= 20%. Зададим функцию, определяющую какую массу первого слитка нужно сплавить, чтобы получить слиток с наперед заданным r. Рассмотрим формулу для нахождения r: r = (2*0.2 + 0.1 * m)/(2+m) где m - неизвестная масса части первого слитка. тогда 2r + rm = 0.4 + 0.1*m ---> 2r - 0.4 = 0.1*m - r*m m(r) = (2r - 0.4)/(0.1 - r). Подставив любое значение содержания серебра r, соответствующее интервалу, можно узнать какую массу от слитка 1 нужно сплавить со слитком 2.
Отсюда можно сказать, что 14% <= r <= 20%.
Зададим функцию, определяющую какую массу первого слитка нужно сплавить, чтобы получить слиток с наперед заданным r. Рассмотрим формулу для нахождения r:
r = (2*0.2 + 0.1 * m)/(2+m)
где m - неизвестная масса части первого слитка.
тогда 2r + rm = 0.4 + 0.1*m ---> 2r - 0.4 = 0.1*m - r*m
m(r) = (2r - 0.4)/(0.1 - r).
Подставив любое значение содержания серебра r, соответствующее интервалу, можно узнать какую массу от слитка 1 нужно сплавить со слитком 2.