58/100 = 29/50; 42/100 = 21/50. Чтобы получились точные значения 58% и 42%, должно быть минимум 50 чел, тогда 29 чел = 58%, 21 чел = 42%. а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел. Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%. Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%. 42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%. ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия: 1) n*0,58 = k,p ~ k (целое) 2) k/n ~ 0,58 (при округлении до сотых) Те же 2 условия должны соблюдаться для 0,42. Опытным путем мне удалось найти минимальное количество - 12. 12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58% 12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
На первом витке окружности расставлены точки 0; π/2; π; 3π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4
На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4 + 2π=11π/4
На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение
11π/4+2π=19π/4
На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4
На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1
Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью
Это точки А и В
Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1
Пусть
√17-√26 > -1
√17 + 1 > √26
17 + 2√17 + 1 >26
2√17>8
4·17 > 64 - верно
Значит точка существует
Ей соответствуют на ед окружности точки Р и Т
Чтобы получились точные значения 58% и 42%, должно быть минимум
50 чел, тогда 29 чел = 58%, 21 чел = 42%.
а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел.
Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%.
Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%.
42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%.
ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия:
1) n*0,58 = k,p ~ k (целое)
2) k/n ~ 0,58 (при округлении до сотых)
Те же 2 условия должны соблюдаться для 0,42.
Опытным путем мне удалось найти минимальное количество - 12.
12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58%
12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%