Отбросим 2 двоечников, остается 28 учеников. 5 получают 12 учеников, 4 получают 14 учеников, 3 получают 16 учеников. 5, 4 и 3 одновременно получают x учеников. Только 5 и 3 получают 3 ученика, только 5 и 4 - 3 ученика. Всего 6. Значит, (12 - 6 - x) = (6 - x) учеников получают только 5.
Только 5 и 4 получают 3 ученика, только 3 и 4 - 4 ученика. Всего 7. Значит, (14 - 7 - x) = (7 - x) учеников получают только 4.
Только 5 и 3 получают 3 ученика, только 3 и 4 - 4 ученика. Всего 7. Значит, (16 - 7 - x) = (9 - x) учеников получают только 3. Сведем все это в одну таблицу: 5 = (6-x); 4 = (7-x); 3 = (9-x); 4+5 = 3; 3+5 = 3; 3+4 = 4; 3+4+5 = x. Всего 28. (6 - x) + (7 - x) + (9 - x) + 3 + 3 + 4 + x = 28 22 - 3x + 10 + x = 28 2x = 32 - 28 = 4 x = 2 ответ: 2 ученика получают одновременно 3, 4, и 5
необходимо потребовать, чтобы выражение было положительно, поскольку стоит в показателе логарифма, а показатель логарифма, будь то линейный, десятичный, в любом случае должен быть положителен:
, значит,
— с этим, думаю, всё понятно и проблем не возникает, а вот второе число... внимательно смотрим на него и замечаем, что это точный квадрат числа , являющегося в то же время точным квадратом восьми десятых; получается, что — это , то есть или, вставшее по соседству с этим числом, .
переписываем:
упрощаем и ещё раз переписываем:
напомню тебе правило опущения степеней: неравенство может быть преобразовано в неравенство при условии, что – константа, и что ; если , то неравенство принимает следующий вид: ; пользуясь им, переписываем наше неравенство в следующем виде:
упрощаем и снова переписываем:
и ещё раз:
методом интервалов:
я постарался максимально понятно объяснить, надеюсь, ты понял.
5 получают 12 учеников, 4 получают 14 учеников, 3 получают 16 учеников.
5, 4 и 3 одновременно получают x учеников.
Только 5 и 3 получают 3 ученика, только 5 и 4 - 3 ученика. Всего 6.
Значит, (12 - 6 - x) = (6 - x) учеников получают только 5.
Только 5 и 4 получают 3 ученика, только 3 и 4 - 4 ученика. Всего 7.
Значит, (14 - 7 - x) = (7 - x) учеников получают только 4.
Только 5 и 3 получают 3 ученика, только 3 и 4 - 4 ученика. Всего 7.
Значит, (16 - 7 - x) = (9 - x) учеников получают только 3.
Сведем все это в одну таблицу:
5 = (6-x); 4 = (7-x); 3 = (9-x); 4+5 = 3; 3+5 = 3; 3+4 = 4; 3+4+5 = x. Всего 28.
(6 - x) + (7 - x) + (9 - x) + 3 + 3 + 4 + x = 28
22 - 3x + 10 + x = 28
2x = 32 - 28 = 4
x = 2
ответ: 2 ученика получают одновременно 3, 4, и 5
необходимо потребовать, чтобы выражение было положительно, поскольку стоит в показателе логарифма, а показатель логарифма, будь то линейный, десятичный, в любом случае должен быть положителен:
, значит,
— с этим, думаю, всё понятно и проблем не возникает, а вот второе число... внимательно смотрим на него и замечаем, что это точный квадрат числа , являющегося в то же время точным квадратом восьми десятых; получается, что — это , то есть или, вставшее по соседству с этим числом, .
переписываем:
упрощаем и ещё раз переписываем:
напомню тебе правило опущения степеней: неравенство может быть преобразовано в неравенство при условии, что – константа, и что ; если , то неравенство принимает следующий вид: ; пользуясь им, переписываем наше неравенство в следующем виде:
упрощаем и снова переписываем:
и ещё раз:
методом интервалов:
я постарался максимально понятно объяснить, надеюсь, ты понял.