Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
Чтобы понять решение линейных неравенств, рассмотрим пример:
Как видно из решения, мы используем уже известные нам с 5ого класса навыки переноса x в левую часть. Это неравенство отличается от линейного уравнения только знаком >. Стоит также отметить, что ответ на решение записывается в неравенствах в виде промежутка. В нашем случае так: x∈(2; +∞). Круглая скобка показывает, что точка не включена в промежуток.
Рассмотрим другой пример:
Как видно из решентя, мы меняем знак неравенства на противоположный при домножении обоих его частей на отрицательное число. ответ к неравенству запишем так: x∈[-1; +∞).
Чтобы закрепить материал попробуйте решить два неравенства, а потом сверить ответы:
ответ: x∈[-2 4/9; +∞).
ответ: x∈(1 1003/4925; +∞).
Система неравенств решается так:
Т. е. сначала решаем два неравенста как будто системы нет.
Теперь ищем общую часть. Она и будет являться ответом. У нас это: x∈(4, 7).
Как видно из решения, мы используем уже известные нам с 5ого класса навыки переноса x в левую часть. Это неравенство отличается от линейного уравнения только знаком >. Стоит также отметить, что ответ на решение записывается в неравенствах в виде промежутка. В нашем случае так: x∈(2; +∞). Круглая скобка показывает, что точка не включена в промежуток.
Рассмотрим другой пример:
Как видно из решентя, мы меняем знак неравенства на противоположный при домножении обоих его частей на отрицательное число. ответ к неравенству запишем так: x∈[-1; +∞).
Чтобы закрепить материал попробуйте решить два неравенства, а потом сверить ответы:
ответ: x∈[-2 4/9; +∞).
ответ: x∈(1 1003/4925; +∞).
Система неравенств решается так:
Т. е. сначала решаем два неравенста как будто системы нет.
Теперь ищем общую часть. Она и будет являться ответом. У нас это: x∈(4, 7).
Попробуй решить систему сам:
ответ: x∈[10; +∞).
Пример нахождения области пересечения на фото.