Объяснение: пусть скорость 2-го велосипедиста=х, тогда скорость 1-го=х+4. Второй велосипедист потратил на дорогу 96/х времени, а первый 96/х+4. Первый велосипедист потратил времени на 4 меньше, чем второй на дорогу. Составим уравнение:
(96/х)-96(х+4)=4 | находим общий знаменатель: х(х+4)
(96х+384-96х)/х(х+4)=4
384/х²+4х=4 |перемножим числитель и знаменатель соседних дробей крест накрест:
4(х²+4х)=384 |÷4
х²+4х=96
х²+4х-96=0
Д=16-4×(-96)=16+384=400
х1=( -4-20)/2= -24/2= -12
х2=(-4+20)/2=16/2=8
Итак у нас есть 2 значение х, но х1= -12 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=8.
Скорость второго велосипедиста=8км/ч, тогда скорость первого=8+4=12км/ч
Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
ответ: скорость победителя=12км/ч
Объяснение: пусть скорость 2-го велосипедиста=х, тогда скорость 1-го=х+4. Второй велосипедист потратил на дорогу 96/х времени, а первый 96/х+4. Первый велосипедист потратил времени на 4 меньше, чем второй на дорогу. Составим уравнение:
(96/х)-96(х+4)=4 | находим общий знаменатель: х(х+4)
(96х+384-96х)/х(х+4)=4
384/х²+4х=4 |перемножим числитель и знаменатель соседних дробей крест накрест:
4(х²+4х)=384 |÷4
х²+4х=96
х²+4х-96=0
Д=16-4×(-96)=16+384=400
х1=( -4-20)/2= -24/2= -12
х2=(-4+20)/2=16/2=8
Итак у нас есть 2 значение х, но х1= -12 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=8.
Скорость второго велосипедиста=8км/ч, тогда скорость первого=8+4=12км/ч