В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
catcher1
catcher1
26.04.2020 07:02 •  Алгебра

Прибыль, полученная фирмой за первые два квартала текущего года, составила 2170 р., причём прибыль, полученная во втором квартале, была на 17 % выше, чем в первом. какую прибыль получила эта фирма в первом квартале?

Показать ответ
Ответ:
Romizn
Romizn
27.09.2020 09:58
1) Вычислим производную функции : 
y'=(x^2+6x+8)'=(x^2)'+(6x)'+(8)'=2x+6
Приравниваем производную функции к нулю
2x+6=0\\ x=-3
а) Найдем промежутки возрастания и убывания функции:
_____-___(-3)___+____
Функция возрастает на промежутке (-3;+\infty) , а убывает - (-\infty;-3)
б) Найти точки экстремума.
В точке х=-3 производная функции меняет знак с (-) на (+), следовательно, х=-3 - точка минимума.
в) Наибольшее и наименьшее значение функции на отрезке [-4;1].
Найдем значения функции на концах отрезка.
y(-4)=(-4)^2+6\cdot(-4)+8=0
y(-3)=(-3)^2+6\cdot(-3)+8=-1  - наименьшее
y(1)=1^2+6\cdot1+8=15  - наибольшее
Пример 2.  Общий вид уравнения касательной имеет вид: f(x)=y'(x_0)(x-x_0)+y(x_0)
1. Найдем значение функции в точке х0=2
y(2)=2^2=4
2. Производная функции:
y'=(x^2)'=2x
3. Вычислим значение производной функции в токе х0=2
y'(2)=2\cdot2=4
Искомое уравнение касательной: f(x)=4(x-2)+4=4x-4
Пример 3.  
Решить неравенство методом интервалов                           
  \dfrac{x^2-1}{x+7}\ \textgreater \ 0

Решение:

Рассмотрим функцию f(x)= \dfrac{x^2-1}{x+7}

Область определения функции: (-\infty;-7)\cup(-7;+\infty)

Приравниваем функцию к нулю:
\dfrac{x^2-1}{x+7}=0\\ x^2-1=0\\ x=\pm1

Находим теперь решение неравенства
____-__(-7)___+__(-1)___-___(1)___+____
ответ:  x \in (-7;-1)\cup(1;+\infty)
1)дана функция y=x^2+6x+8. найдите: а)промежутки возрастания и убывания функции б)точки экстремума в
0,0(0 оценок)
Ответ:
tyrko24111995
tyrko24111995
27.09.2020 09:58
Для начала приравняем неравенство к нулю и решим получившееся уравнение
-x^2-2x+8=0 \\ D=b^2-4ac=36 \\ x_1_,_2= \frac{-b^+_- \sqrt{D} }{2a} \\ x_1=2 \\ x_2=-4
полученные корни наносим на числовую ось
________-4____________2____________
находим знак функции на самом правом интервале
f(3)=-3^2-2*3+8=-9-6+8=-7<0
поэтому на самом правом интервале ставим знак "+"
________-4____________2_____+________
затем расставляем знаки на остальных интервалах помня, что при переходе через корень знак меняется
____+___-4_____-______2_____+_________
вернемся к исходному неравенству. функция должна быть больше или равна нулю. нас удовлетворяют интервалы со знаком "+"
]-∞;-4]∨[2;+∞[
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота